
Formal Requirements in an Informal World
Daniel Dietsch, Vincent Langenfeld, Bernd Westphal
Department of Computer Science, University of Freiburg

Email: {dietsch,langenfv,westphal}@informatik.uni-freiburg.de

Abstract—With today’s increasing complexity of systems and
requirements there is a need for formal analysis of requirements.
Although there exist several formal requirements description lan-
guages and corresponding analysis tools that target an industrial
audience, there is a large gap between the form of requirements
and the training in formal methods available in industry today,
and the form of requirements and the knowledge that is necessary
to successfully operate the analysis tools.

We propose a process to bridge the gap between customer
requirements and formal analysis. The process is designed to
support in-house formalisation and analysis as well as formali-
sation and analysis as a service provided by a third party. The
basic idea is that we obtain dependability and comprehensibility
by assuming a senior formal requirements engineer who prepares
the requirements and later interprets the analysis results in
tandem with the client. We obtain scalability as most of the
formalisation and analysis is supposed to be conducted by junior
formal requirements engineers.

In this paper, we define and analyse the process and report on
experience from different instantiations, where the process was
well received by customers.

I. INTRODUCTION

The quality of requirements is crucial to the development of
systems and software, as there is a risk that defects introduced
in the requirements analysis stage are reproduced as part of the
(then, with regards to the requirements correctly) implemented
product. Requirements analysis tools promise to find defects
and other violations of well-formedness properties in a set of
requirements. Recently, the analysis of formalised requirements
has gained much attention in industrial contexts (e.g. [14], [4],
[6], [18]). In these works, languages for the formalisation and
tools for the analysis of formal requirements are presented
(partly together with case-studies in specific contexts), but two
important problems remain largely unsolved: How to obtain
formal requirements and how to integrate analysis tools into
generic software development processes.

In requirements engineering, there is the distinction between
a requirement being a condition or capability of a system (in
short) and its representation. Today, the predominant form of
representing requirements is natural language (in that sense,
we face an informal world) while formal requirements analysis
tools need formal representations. Requirements engineers can
in general not be expected to be trained in formal methods, so
the question is how experts in formal methods can complement
an informal requirements engineering process.

Regarding the use of tools, we can learn from the introduction
of automatic formal program analysis in industrial contexts [3]
that complex formal tools need well trained personnel for

The third author was supported by the DFG, reference no. WE 6198/1-1.

effective use; a lack thereof may lead to useful tools being
rejected because clients are, e.g., unsure about the interpretation
of analysis results. Hence formalisation and analysis tools have
to be embedded into a process. A process guides who (role)
does what (activity) depending on and producing what (artefact).
Defined processes prevent us from forgetting or needlessly
repeating things, and provides a clear plan. Roles allow to
define the competences that a certain position demands, and
to assign developers with the right skill set. Activities and
artefacts allow us to identify interfaces, analyse risks, and
propose mitigations.

The ideal process for formal requirements, would be able
to formalise and validate all requirements for all relevant
properties. In reality, there is no upper bound on the time it takes
to create ‘the perfect formalisation’ of a single requirement.
Validation alone, i.e., the confirmation that a formal description
correctly describes the considered condition or capability, can
be prohibitively expensive. In our perception, a realistic process
has to work for as many (important, relevant) requirements
as possible with as valid as possible formalisations. In other
words, the goal is to arrive at the best requirements possible,
given all constraints. Regardless of the particular formalisms
and tools, a process for formal requirements applicable in a
larger project context, needs to be budgetable, comprehensible
to the stakeholders, and the outcome should be clearly defined.

In this work, we describe the Dietsch-Langenfeld-process
model for formal requirements engineering that proposes to
bring formalisation and formal analysis to scale and to a budget.
The process is supposed to connect to a setting where all
requirements elicitation and informal description is done and
the only remaining gap is the formalisation and analysis. One
feature by which the process gets attractive is the proposal to
tolerate false negatives and thereby mitigate the risk of the
hardly calculable perfect validation (see above). The proposed
process can be executed by external entities so that no additional
training is required on the customer’s side, where a customer
in the following is understood as a requirements engineer who
only lacks formal methods expertise.

Moitra et al. [8], [14] have recently presented the require-
ments analysis tool ASSERT. They also see the gap between
engineers and formal requirements, so they designed their
requirements language for the tool to look familiar to engineers
in their industrial domain and give explanatory tool outputs.
The authors briefly explain the steps of formalisation in [15],
yet they do not provide a process model. This may be partly due
to their tool being used in-house, in contrast to our approach,
where it is critical to have defined roles and deliverables.

14

2020 IEEE Workshop on Formal Requirements (FORMREQ)

978-1-7281-8358-9/20/$31.00 ©2020 IEEE
DOI 10.1109/FORMREQ51202.2020.00010

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on December 15,2021 at 11:53:56 UTC from IEEE Xplore. Restrictions apply.

arte-
fact0 activity1activity1

arte-
fact1 activity2activity2

arte-
fact2

role1 role2

Fig. 1. Process modelling notation.

In [7], Cimatti et al. lay out a formal methods based
approach to requirements validation that comes closer to a
process model. The process starts with a natural language
system description (from Wikipedia), which is decomposed
and formalised into UML and a formal annotation language,
with subsequent analysis. While the approach described is
very broad, our process model can be seen as refining and
concretising one activity in their work, namely the step from
structured requirements to a formalisation and analysis.

In [5], Brill et al. demonstrate the use of the (then new) visual
formalism Life Sequence Charts (LSCs) for requirements from
the railway domain. The whole approach is embedded into
the V-Model [21] where the whole development process is
accompanied by formal models, (later also demonstrated in [9]
on another railway application). While this approach covers
the complete system development, the relation of the initial
model to requirements is just assumed, in contrast to the client
feedback that is used in our approach.

II. PRELIMINARIES

A. Process Modelling

Following, e.g., the V-Model XT [21], a process model
consists of activities, artefacts, and roles. An artefact is any
kind of product occurring in a software engineering project
such as documents, software, hardware etc. Artefacts are
created or modified by activities, and activities may depend
on other artefacts as inputs. Roles participate in activities and
include capabilities, rights, and responsibilities wrt. the activity.
Persons with the necessary capabilities are assigned to roles to
participate in activities of the process. A role can be usually
filled by multiple persons. Each artefact has exactly one role,
that is responsible for the artefact. Artefacts may further have a
product state model. In the V-Model XT [21], for example, an
artefact may have one of the following states, ‘being processed’,
‘submitted’, and ‘completed’, with corresponding transitions.

Figure 1 shows a graphical representation of a process model.
Activities are rectangular nodes with a cogwheel in the top-
right corner (‘activity1’ and ‘activity2’in Figure 1), artefacts
are rectangular nodes with a dog’s ear in the top-right corner
(‘artefact0’ to ‘artefact2’ in Figure 1), and roles are game figure
nodes (‘role1’ and ‘role2’ in Figure 1). Relations between the
activities, artefacts, and roles become directed edges in the
graphical representation. A blue arrow from an activity to
an artefact indicates a dependency, a red arrow represents
the create-or-modify relation. Arrows from roles to artefacts
indicate responsibility (black arrow), and arrows from roles to

activities (grey arrow) indicate participation in the activity. The
product state model is not shown in the graphical representation.

For example, the process in Figure 1 shows an activity
‘activity1’ that depends on ‘artefact0’ and creates or modifies
‘artefact1’. The role ‘role1’ is responsible for ‘artefact1’ and
only persons filling ‘role1’ participate in ‘activity1’. Also ‘role1’
and ‘role2’ participate in ‘activity2’, which creates ‘artefact2’.

Note that a process model in this sense focuses on depen-
dencies and responsibilities, i.e., Figure 1 states that ‘activity2’
cannot begin before some ‘artefact1’ (in some state) exists.
The process model does not state that ‘activity1’ necessarily
needs to be completed and terminated before ‘activity2’ begins.
Both activities can be conducted at overlapping times, e.g., to
propagate changes on ‘artefact0’ to ‘artefact1’. In this case, the
artefact instances would have different revision numbers e.g.
revision of the artefact used by ‘activity2’ is lower than the
revision created or edited by ‘activity1’.

Further note that one role node in the graphical representation
that participates in multiple activities (such as ‘role1’ in
Figure 1) is a shorthand notation for two role nodes of the
same kind. The textual description of the modelled process can
impose further constraints that are not visible in the graphical
representation. For example, that the person assuming ‘role1’
in Figure 1 should be the same person all the time. Also, one
person can fill multiple roles (if qualified), a textural description
can be added if different persons should be needed.

B. Formal Requirements Specification Languages

There is a broad spectrum of formal languages that are
used to describe different kinds of requirements. The Dietsch-
Langenfeld-process is designed to be used with a wide variety
of formal requirements specification languages. So far, we have
applied the process on functional requirements for reactive
systems from the automotive and railway domains In these
contexts, a particular instance of so-called pattern languages
(or pattern catalogues) was known to be appropriate for
formalisation. In the following, we give a brief overview over
the particular pattern language [17] that we used. The process
is supposed to support other pattern languages, such as the
Universal Pattern [20] or ASSERT [15], or Seamless Require-
ments [16] in the context of object-oriented programming. For
examples of particular requirements, we refer the reader to
[13], [17] for lack of space.

A stated design goal of the pattern language [17] was, to
offer a good compromise between a concise logical grounding
of the requirements, as well as being accessible to an engineer
with little prior training in formal methods. Therefore, each
pattern is a sensible English sentence with blanks, but is also
tied to a fixed formula in formal logic, with corresponding
blanks. There is a set of predefined, parameterised patterns to
describe frequently occurring relations between, e.g., inputs
and outputs of reactive systems, possibly including timing
aspects.

The following two examples are requirements from the
pattern language, instantiated over the Boolean observables A,
B and C.

15

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on December 15,2021 at 11:53:56 UTC from IEEE Xplore. Restrictions apply.

Globally, it is never the case that ‘A’ holds.,
By this example it is required that the value of A is not true at
all times on all computations of the system. A more complex
example including time constraints is:

Globally, it is always the case that if ‘B’ holds
then ‘C’ holds after at most ‘5’ time units.

The requirement is satisfied by a system if and only if, on
each computation, each phase where B evaluates to true for a
positive duration is followed by a phase where C evaluates to
true after 5 time units the latest.

Note, that patterns are not limited to be instantiated with
singular Boolean observables, and may contain complex
Boolean expressions over observables.

Also note, that although the patterns can be understood
by the untrained user, training is required to use the patterns
correctly. The intuitive understanding captures many, but not
all cases. Some (edge) cases rely on the understanding of the
logical translation, to be explained.

III. PROCESS

Figure 2 gives a graphical representation of the Dietsch-
Langenfeld-process to manage the formalisation of functional
requirements on reactive systems with pattern language. In the
following, we elaborate on its roles, artefacts, and activities.

A. Roles

The model of the Dietsch-Langenfeld-process (cf. Figure 2)
includes the following three roles.
Client The client role models the representative of the cus-

tomer in the Dietsch-Langenfeld-process. Recall that
we assume that customers are requirements engineers
that need formalisation and formal analysis for existing
informal requirements. Persons assuming the client role
are expected to have strong domain knowledge and a
deep understanding of the system that is to be built, e.g.,
embedded systems engineers by training. The process
benefits from advanced knowledge on the concepts and
principles of requirements engineering (in the sense
of, e.g., [19]), and preferably a basic understanding of
formal methods. The client participates in preparation
and preprocessing of raw requirements and in delivery of
the report (see below), the latter two together with the
supervisor.

Supervisor The supervisor role is comparable to a lead
developer in software development. Persons assuming
the supervisor role should have a strong background in
the formal requirements specification language used in the
process. The supervisor should have profound knowledge
of requirements engineering, yet need not have more
than little prior knowledge of the system to be built or
its domain. The supervisor needs to be able to guide the
formalisation process on the conceptual level (for example,
to find abstractions for specification details in the raw
requirements to ease (or only enable) the formalisation),
and to interpret analysis results. The supervisor is the

contact point between customer’s and developer’s side, as
well as instructing the workers.

Worker The worker role models requirements junior engineers
that conduct the formalisation and analysis of requirements
under guidance of the supervisor. Persons assuming the
worker role have a solid understanding of the used formal
requirements specification language, yet need not be
familiar with the domain of the system to be built. A
worker is assumed to be able to formalise common
requirements on his or her own and to identify cases that
need to be escalated. In small requirements formalisation
projects following our process, supervisor and worker
may be the same person. Employing different persons
scales the process up and has the advantage that with
dedicated workers, who are not domain experts, there
is a higher probability of recognising irregularities that
domain experts tend to overlook because of their domain
knowledge [2], [10].

B. Artefacts

The central conceptual artefacts of the Dietsch-Langenfeld-
process are requirements and outcomes from formal and
informal analyses of these requirements for different properties.
Figure 2 distinguishes five high-level artefacts that each consist
of a set of lower-level artefacts (cf. Figure 3). Each artefact
instance has a revision (‘rev ’ in Figure 3), and each formal
requirement in addition has a product state of the model shown
in Figure 4 (‘st’ in Figure 3).

There are the following high-level artefacts:
Raw Requirements The raw requirements artefact consists

of a set of informal requirements (cf. Figure 3) and
is provided by the customer. Each requirement in ‘raw
requirements’ needs to have an identifier (IRID0). Raw
requirements are informal or semi-formal. They are
described using (structured) text, plus possibly additional
information like a categorisation, comments, illustrations,
or preliminary transition tables or state machines. A raw
requirement need not be formalisable.

Informal Requirements The informal requirements artefact
consists of a set of informal requirements with an
identifier IRID (cf. Figure 3). This artefact is basically
a selection and clarification of requirements from raw
requirements that is created by the supervisor, consulting
the client as needed. The supervisor may, e.g., filter out
irrelevant comments or requirements that are obviously
not formalisable with the used formalism, join or split
requirements, or propose suitable (formal) data-types for
certain observables.
The client needs to accept informal requirements, because
this artefact becomes the subject of the formalisation
project; the final report includes results on informal re-
quirements (not on raw requirements, yet the preprocessing
establishes a relation between IRID and IRID0 identifiers
for traceability).

Formal Requirements The formal requirements artefact con-
sists of a set of formalised requirements, each with an

16

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on December 15,2021 at 11:53:56 UTC from IEEE Xplore. Restrictions apply.

prepareprepare

raw
require-
ments

deliverdeliver

preprocesspreprocess

informal
require-
ments

report

formaliseformalise

formal
require-
ments

analyseanalyse

analysis
results

reviewreview

Client

Supervisor

Worker Worker

Supervisor

Worker

Client

formal languages & analysis tools

Fig. 2. Graphical representation of the Dietsch-Langenfeld-process.

raw
require-
ments

informal
require-
ments

formal
require-
ments

analysis
results

report

IRID0 IRID FRID res0 res

rev rev rev rev rev

rev rev st ,rev rev rev

includes

0..n consists of 0..n 0..n 0..n 0..n

0..n 1 1..n 1 1..n 0..n 0..n

Fig. 3. Sub-structure of high-level artefacts from Figure 2.

• ready for
formalisation

ready for
analysis

ready for
review

done
ok

add issue tag

remove issue tag

ok ok

Fig. 4. Product state model of formalised requirements.

identifier FRID . Each formal requirement formalises one
informal requirement IRID (yet one IRID may need
multiple FRID), thereby the formal requirements artefact
includes the informal requirements artefact (cf. Figure 3).
Each formal requirement assumes one of four product
states st from the product state model in Figure 4. As
soon as an IRID is considered for formalisation, a FRID
identity is created in state ‘ready for formalisation’. If
there is an issue with an IRID , e.g., because apparently
a matching pattern is missing, or the affected observables
are unclear, a corresponding so-called tag is attached to
the FRID and the state changes to ‘ready for review’.
Otherwise, the FRID is associated with a pattern instance
and the state changes to ‘ready for analysis’. FRIDs in
state ‘ready for analysis’ become subject to a formal
analysis with a corresponding tool and a result res0
becomes associated. If there is an issue during analysis,
e.g., due to type-checking errors or limitations of the
analysis tool, again a corresponding tag is added and the
state changes to ‘ready for review’. FRIDs in state ‘ready

for review’ are reviewed and, depending on the tags and
whether issues exist and can be resolved, change state
back to one of the previous states or are considered done.

Analysis results The analysis results artefact collects all
findings on any formal requirement, i.e., its state and tags,
any relevant tool output from analysis, – including so-
called counter-examples, i.e., exemplary input sequences
that witness an issue – and possibly additional comments,
questions, or general feedback on the requirements quality.
All findings for one FRID constitute one preliminary
result res0, preliminary results refer to their FRID for
traceability, and in this sense analysis results include
formal requirements (cf. Figure 3).

Report The report artefact consists of one (final) result per
IRID . The report is prepared with the client as target
audience, hence it summarises the analysis results and may,
e.g., contain additional explanations for more complicated
issues. The form of these artefacts may be prescribed by
the customer, e.g., using a particular reporting sheet.
Note that the report includes formal requirements (cf.
Figure 3), i.e., the customer receives the formalised
requirements for further reference, yet it does not directly
include the analysis results, which are of more technical
nature.

C. Activities
We distinguish the following six activities.

Prepare The client is responsible for providing raw require-
ments.

17

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on December 15,2021 at 11:53:56 UTC from IEEE Xplore. Restrictions apply.

Preprocess The supervisor is responsible for preparing infor-
mal requirements from raw requirements. The supervisor
inspects the raw requirements for, e.g., obvious errors,
irrelevant information, or for constructs that are known
to be unsupported by the used formalism, and other road
blocks for the formalisation. Issues are resolved with
support from the client.
Note that the activity ‘Preprocess’ also depends on analysis
results: Internal results may indicate issues that require
changes to informal requirements (which need to be
conducted in cooperation with the client).

Formalise & Analyse Workers are responsible for creating
formal requirements from informal ones (Formalise) and
for analysing formal requirements (Analyse), in particular
by the operation of formal analysis tools.
Note that formal requirements that are not in the product
state ‘ready for analysis’ are not analysed. Issues during
this activity, if not solvable by the worker, are recorded
by product state and documented in analysis results.
The exact instructions for the analyse and formalise
activities have to be given by the analysis tool (e.g. BTC
[4], ASSERT [14] or HANFOR).

Review The supervisor is responsible to review analysis results
as provided by workers. Note that, because analysis results
effectively include formal requirements, the formalisation
as such is subject of the review. The worker participating
in the review is primarily meant to represent the workers
who conducted the formalisation and analysis. Depending
on the experience of particular workers, the process can
be extended to an iteration where workers review other
workers’ results to lower the workload of the supervisor.
Further note that this activity modifies both, analysis
results and report, thereby introducing a feedback loop to
activities ‘Preprocess’ and ‘Formalise’ (and transitively to
‘Analyse’). The goal of this activity is to understand issues
that occurred during formalisation or analysis and either
to resolve these issues (e.g. in the case of false positives)
or to summarise and explain them in the report.

Deliver The supervisor delivers the report to client. This can
be a meeting or a video conference where the supervisor
explains positive and negative results from the analysis.
Note that report may include formal requirements that
were, e.g., not formalisable or analysable even after
(re-)consulting the client in activity ‘Preprocess’. If these
issues should be solved, we propose to start over with the
process for a new project, where the report becomes part
of the raw requirements.

D. Scheduling & Budgeting

The process model can be operated in a strict waterfall-
like fashion. The process starts with agreeing on a fixed set
of informal requirements, formalise and analyse activities are
conducted on the informal requirements, and after the report is
produced by the review, the client is contacted, and the results
are discussed. If issues arise in the review, a new project is

started. While this approach is the most predictable, it may
also take the longest overall, as no feedback loop is used.

The process can also be operated in a more agile fashion, by
allowing the supervisor to contact the client whenever deemed
necessary or according to a schedule, to discuss issues and
findings. It is even possible to allow the client to continuously
add requirements to IRID as development continues.

An approach to budget a requirements formalisation project
following the Dietsch-Langenfeld-process from informal re-
quirements to report is to fix the available time (cf. [1]). Then
the contract is to analyse as much as possible with the given
budget, possibly with priorities. This approach allows perfect
prediction of time and cost for both parties, but the extension
of the results may vary. An estimation of the extension is also
relevant for customers, yet obviously hard for the first project
with a new client. But in our experience, good estimations are
possible already for the second project with the same client
in the same domain. The process could also be budgeted on
a per-requirement basis, where a fixed price per requirement
is agreed upon. This would require the supervisor to set a
price according to his experience, and may be most suitable
for in-house projects.

Note, that the quality of the raw requirements and the
‘distance’ between raw requirements, informal requirements,
and formal requirements may have a significant impact on
project duration and cost. It is well-known that, in gen-
eral, preparing raw requirements alone can be a substantial
project [19], hence we exclude it from the discussion here.
Our current experience is based on raw requirements of good
quality, i.e., adequately structured and atomic, comparable to
the requirements inspected in [13]. Project efforts for raw
requirements of different qualities, e.g., if starting from a
Wikipedia page like [7], may vary.

IV. DISCUSSION

The process model presented in Section III clearly integrates
formal requirements and formal analysis into a larger require-
ments engineering process to improve requirements quality. In
this section, we use the process model to analyse what kind
of results one can expect from the process and to which risks
the process and its results are subject to.

The final outcome of the process is the report. Recall that
report is prepared wrt. informal requirements (also cf. Figure 3).
In the report, we can distinguish the following kinds of results.
Firstly, the report can be seen as an expert review, i.e., the
client receives feedback on standard quality aspects of provided
requirements (even on non-formalisable requirements). The
creation of this result is inherent in the Dietsch-Langenfeld-
process because formalisation is a manual activity of supervisor
and workers (in our experience, the precision of today’s
automatic, natural language processing-based formalisation is
too low for requirements on critical systems in the automotive
domain). Secondly, there are statements on the violation of
formally defined quality aspects of requirements such as well-
typedness or (formal) consistency (the set of available outcomes
depends on the tools used in activity ‘analyse’, cf. Figure 2).

18

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on December 15,2021 at 11:53:56 UTC from IEEE Xplore. Restrictions apply.

Finally, there is the formalisation as such that can be used
in simulation, in subcontracting development, or in test case
generation.

For each of the former two results, the outcome can be
positive (low quality wrt. standard aspects; violation of formal
quality aspect) or negative (no low quality indications or
violation detected), like in testing. As we have human work
involved, there is a risk for errors, each outcome can be true or
false, i.e., each result can suffer from type I (false positive) or
type II (false negative) errors. For the first kind of results, we
face the same situation as any expert review: Outcome quality
depends on the experience of the supervisor and worker. There
is a risk for false negatives, yet we expect it to be lower than
in general because here the review is systematic and tool-
supported. For example, requirements are not simply forgotten
or overlooked because they will be found missing in the set
of FRIDs.

The second kind of result needs a closer look: The process
produces a statement (in form of the report) first of all on FRID
(in the following, we identify requirements and their identities),
yet the primary customer interest is IRID . Whether statements
on FRID are true or false positives or negatives basically
hinges on the correctness and capabilities of the employed tool
and can be tackled by tool developers. Statements on IRID
in contrast depend on the validity of its FRID , i.e., whether
this set of formal requirements denotes exactly the same set
of system behaviours that the authors of the IRID text had in
mind. Here lies a risk for false positives or negatives which
is inherent in and well-known from the work with informal
requirements specifications.

In the following, we discuss all four cases, first the positives
and then the negatives, and analyse the possible impacts and
responses in our process. In the positive case, the tool reports
indications of a defect on FRID (which is true, if we assume
the tool to be sound), yet the positive could be true or false
wrt. IRID . We propose that the supervisor supports the client
in understanding whether a positive result is true or false wrt.
IRID . To this end, the supervisor interprets the tool output
(the res0) wrt. the IRID ; in rare cases, if the client is not able
to resolve the issue on the level of IRID , the outcome may
be inconclusive. True positives are usually appreciated by the
customer, false positives not necessarily. False positives can be
perceived as unnecessary expense, and customers confronted
with too many false positives may lose motivation to engage
in the analysis of positives as well as losing confidence in the
method. Unfortunately, in formal analysis, one slight mistake
can result in many true positive results res0 for many formal
requirements FRID . For this reason, we distinguish between
results and the report. The supervisor is expected to interpret
the results and provide support in understanding the root cause
in the report.

In the negative case, the tool reports no indications of a
defect on FRID . If the IRID also do not have that defect, we
have a true negative, which is a desirable outcome. Otherwise,
the negative is false, i.e., the IRID have a defect yet the FRID
do not because (if we assume the analysis tool to be sound)

the FRID happen not to be valid formalisations of the IRID .
Perfect validation can be very expensive [19]. Extensively
validating all FRID in our process is prohibitively expensive.
To obtain a report in the spirit of a dependability case [11], we
discuss the risks for uncovered invalidities. We do not estimate
this risk to be unaccetably high, since an invalid FRID needs
to get past the following indication: (i) the preprocessing of
supervisor (manual), (ii) the formalisation was possible (tool
support) and (iii) the formalised (valid or invalid) requirement
has been confirmed to be well-typed (tool support), and (iv) the
formalised requirement has passed the more involved analyses
(tool support), if only a few requirements are invalid, their
invalidity may show up since combinations of requirements
are checked and the invalid requirement may be identified as
vacuous.

So a negative means that all validly formalised requirements
do not have defects. Thereby, formal analysis (in our process)
lowers the number of possible reasons for later issues with the
system, and hence increases the probability of finally obtaining
a dependable system. In other words, the ‘clou’ of the Dietsch-
Langenfeld-process is that the remaining probability for false
negatives is simply accepted. The process as is seems to offer
a good balance between effort and results (cf. Section V).

V. EXPERIENCE

We have conducted a number of requirements formalisation
projects following the Dietsch-Langenfeld-process with clients
from companies in, e.g., the automotive and the railway domain,
using real-world requirements. The supervisor role was assumed
by university researchers, the majority of workers were students
with a bachelors degree in computer science. We received sets
of raw requirements (IRID0) that contained between 20 and
1000 requirements and did not need extensive preprocessing.
We conducted the process in a mild agile fashion, that is, we
made use of the feedback loops and approached the client
with questions during the project. Still, there was a clearly
defined project end. Note that, for now, we can only report
on preliminary results and impressions, a more detailed and
quantitative analysis of the projects, e.g., wrt. to severity of
uncovered issues, is future work.

The process activities were supported by the two tools
HANFOR and REQANALYZER1. HANFOR is a web-based tool
that offers basic requirements management (by, for example,
keeping track of identifiers, tags, and product states), that
includes a requirements editor (with, e.g., pattern selection
and syntax completion for known observables to avoid typing
errors and aliasing), and that verifies that all expressions are
well-typed wrt. to observable declarations and the type of
fields in a pattern. Reporting is supported in HANFOR by
functions to search and group requirements by tags or status.
REQANALYZER [12] is a formal requirements analysis tool
that analyses sets of requirements for the defects inconsistency,
vacuity, and rt-inconsistency.

1both tools are available at https://ultimate-pa.github.io/hanfor

19

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on December 15,2021 at 11:53:56 UTC from IEEE Xplore. Restrictions apply.

In the following, we report some observations from the
different activities. In the prepare activity, comma separated
values (CSV) files turned out to be the least problematic means
to exchange requirements. In the formalise activity, most of the
requirements have been found easy to formalise because they
are very simple in structure (invariants, or a kind of bounded
response), clearly written, or adhere to a certain grammatical
template. The small number of hard to formalise requirements
were firstly postponed to gather further information on the
context, while formalising other simple requirements. Often
it also helped to read comments and headlines around the
requirement (which is typically not necessary for the easy
requirements), otherwise the requirement was discussed with
the client.

Overall, following the Dietsch-Langenfeld-process was well
received by our industrial partners. Among several advantages
over an in-house solution, our partners mentioned the aspects
that the own personnel did not require particular training, that
the project did not bind own personnel with an uncertain
outcome, and that the formalisation procedure qualifies as
an external review in certain industry contexts, that is, even
if the formal analysis only yields (possibly false) negatives,
the requirements have still been externally reviewed in a
systematical way.

In all conducted projects, the partners considered the results
to be relevant because critical defects in the requirements
were found and because the client appreciated the overall
input from the external review. Issues found and tagged during
formalisation can appear in the final report and may help the
client to improve the requirements quality. The overall number
of false positives was rather low, including the false positives
handled by supervisor and worker. It is our impression that
the raw requirements provided by the customer were already
of good quality, hence formalisation and analyses primarily
increased confidence in quality and opens up the path to,
e.g., generating test cases automatically from the formalised
requirements.

We anticipate that the success of our projects depended
strongly on the implementation of the activities preprocess
and deliver, where a knowledgeable supervisor provides inter-
pretations of the analysis outcomes. Positive outcomes (true
or false) that need to be escalated to the client level are in
general not trivial to understand, and it remains a challenge to
report them comprehensibly. In particular findings of advanced
requirements properties such as rt-inconsistency tend to be
hard to understand yet may cause serious issues in the system
and development if they go undetected (as reported by clients).

VI. CONCLUSION AND FUTURE WORK

We have presented a process that bridges the gap between
the informal requirements usually found in industry, and formal
requirements analysis.

The process facilitates a third party that contributes its
expertise in formal methods and requirements engineering. In
the process, the formalisation activity serves as an additional
review of the requirements. Results of the review and of the

formal analysis are presented to the client by an expert that is
able to give comprehensive explanations on the process require-
ments and the formal background, if necessary. The process in
particular allows to use (or assess) formal requirements analysis
without the effort for training personnel in formal methods.

We have reported qualitative results from multiple real
world projects that uncovered critical issues in the considered
requirements. Ongoing and future work comprises a thorough
quantitative analysis of data gathered in the conducted projects.

REFERENCES

[1] S. F. Arenis, B. Westphal, D. Dietsch, M. Muñiz, A. S. Andisha, and
A. Podelski. Ready for testing: ensuring conformance to industrial
standards through formal verification. Formal Asp. Comput., 28(3):499–
527, 2016.

[2] D. M. Berry. The importance of ignorance in requirements engineering.
J. Syst. Softw., 28(2):179–184, 1995.

[3] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Gros,
A. Kamsky, S. McPeak, et al. A few billion lines of code later: using
static analysis to find bugs in the real world. CACM, 53(2):66–75, 2010.

[4] T. Bienmüller, T. Teige, A. Eggers, and M. Stasch. Modeling requirements
for quantitative consistency analysis and automatic test case generation.
In FM&MDD, 2016.

[5] M. Brill, R. Buschermöhle, W. Damm, J. Klose, B. Westphal, and
H. Wittke. Formal verification of LSCs in the development process. In
H. Ehrig et al., editors, INT, number 3147 in LNCS, pages 494–516.
Springer, 2004.

[6] X. Chen, Z. Zhong, Z. Jin, M. Zhang, T. Li, X. Chen, and T. Zhou.
Automating consistency verification of safety requirements for railway
interlocking systems. In D. E. Damian, A. Perini, and S. Lee, editors,
RE, pages 308–318. IEEE, 2019.

[7] A. Cimatti, M. Roveri, A. Susi, et al. From informal requirements
to property-driven formal validation. In D. D. Cofer and A. Fantechi,
editors, FMICS, volume 5596 of LNCS, pages 166–181. Springer, 2008.

[8] A. W. Crapo, A. Moitra, C. McMillan, and D. Russell. Requirements
capture and analysis in ASSERT. In RE, pages 283–291. IEEE, 2017.

[9] M. Filax, T. Gonschorek, and F. Ortmeier. Correct formalization of
requirement specifications: A V-Model for building formal models. In
T. Lecomte, R. Pinger, and A. B. Romanovsky, editors, RSSRail, volume
9707 of LNCS, pages 106–122. Springer, 2016.

[10] I. Hadar, P. Soffer, and K. Kenzi. The role of domain knowledge in
requirements elicitation via interviews: an exploratory study. Requir.
Eng., 19(2):143–159, 2014.

[11] D. Jackson. A direct path to dependable software. CACM, 52(4), 2009.
[12] V. Langenfeld, D. Dietsch, B. Westphal, J. Hoenicke, and A. Post.

Scalable analysis of real-time requirements. In D. E. Damian, A. Perini,
and S. Lee, editors, RE, pages 234–244. IEEE, 2019.

[13] V. Langenfeld, A. Post, and A. Podelski. Requirements defects over
a project lifetime: An empirical analysis of defect data from a 5-year
automotive project at bosch. In M. Daneva and O. Pastor, editors, REFSQ,
volume 9619 of LNCS, pages 145–160. Springer, 2016.

[14] A. Moitra, K. Siu, A. W. Crapo, H. R. Chamarthi, M. Durling, M. Li,
H. Yu, P. Manolios, and M. Meiners. Towards development of complete
and conflict-free requirements. In RE, pages 286–296. IEEE, 2018.

[15] A. Moitra, K. Siu, A. W. Crapo, M. Durling, M. Li, P. Manolios,
M. Meiners, and C. McMillan. Automating requirements analysis and
test case generation. Requir. Eng., 24(3):341–364, 2019.

[16] A. Naumchev and B. Meyer. Seamless requirements. Comput. Lang.
Syst. Struct., 49:119–132, 2017.

[17] A. Post, I. Menzel, and A. Podelski. Applying restricted english grammar
on automotive requirements — does it work? In REFSQ, pages 166––180,
2011.

[18] H. Roehm, T. Heinz, and E. C. Mayer. Stlinspector: STL validation with
guarantees. In R. Majumdar and V. Kuncak, editors, CAV, volume 10426
of LNCS, pages 225–232. Springer, 2017.

[19] C. Rupp and die SOPHISTen. Requirements-Engineering und
-Management. Hanser, 6th edition, 2014.

[20] T. Teige, T. Bienmüller, and H. J. Holberg. Universal pattern: For-
malization, testing, coverage, verification, and test case generation for
safety-critical requirements. In MBMV, pages 6–9, 2016.

[21] V-Modell XT, 2019. Version 2.3.

20

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on December 15,2021 at 11:53:56 UTC from IEEE Xplore. Restrictions apply.

